College of Engineering Department of Civil Engineering

CE 574 Behavior of Reinforced Concrete Members

Credit and Contact hours	3 / 3 (Lectures), 0 (Tutorials), 0 (Laboratory)	
Required, or Elective	Required	
Course Description	he course is intended to provide in-depth understanding of how reinforced oncrete (RC) members behave under imposed loads and deformations starting om basic behavior to how ACI 318-19/ SBC 304-24 design code equations were troduced and derived. Reinforced concrete materials: factors affecting strength ad deformability, stress/strain relations, and confinement models. Short and ender members under axial load only or both flexure and axial load: sectional halysis, plastic hinges and ductility of members, and inelastic deformations. ehavior of (RC) members in Shear: sectional design, compression field theories, ad Truss analogy (strut-and-tie models). Anchorage: bond and development of ars, splices, hooks, mechanical devices, and Structural continuity.	
Prerequisites or Co- requisites	Under graduate Course CE 370 Reinforced Concrete Design-I, or any equivalent course that covers the basic concept of flexural and shear behavior of reinforced concrete components, such as slabs, beams, columns, walls, and footings. In addition to design for serviceability requirements, bond, development lengths, and splicing of reinforcement.	
	Students completing this course successfully will be able to:	
	Course Learning Outcomes (CLOs)	Related Student Outcomes (SO)
	CLO1. Recognize advanced engineering knowledge, concepts and techniques to identify, interpret and analyze complex and real-life engineering problems. K1	SO1
Course	CLO2. Analyze reinforced concrete members under extreme imposed loads and deformations using available models in the literature, Excel or programming languages. S1	SO2
Learning Outcomes	CLO3. Apply experimentally proposed models for structural concrete, using finite element software packages, or numerical methods to determine the strength and deformation capacity. S2	SO3
	CLO4. Justify the available models for reinforced concrete members in the literature with more confidence and compare its behavior. S4	SO5
	CLO5. Evaluate existing structural concrete elements using finite element software packages, or numerical methods. S4	SO5
	CLO6. Demonstrate professional engineering and ethical values in assigned projects, assignments, and research work with high academic integrity. V1	SO6

	SO 1 Recognize advanced engineering knowledge, concepts, and techniques t interpret, and analyze complex and real-life engineering problems.		
Student	SO 2 Provide solutions for complex and real-life engineering problems throug and the use of modern engineering tools, and identify their impact on so cultural, environmental, safety, and economic factors.		
Outcomes	SO 3 Investigate scientific research problems independently or through teamy	vork using critical	
related to this	thinking, appropriate techniques, advanced tools, and management princ		
Course	SO 5 Design novel advanced Civil Engineering systems and evaluate their performance, sustainability, and effectiveness for engineering practice and their impact in global, economic, environmental, and societal contexts		
	SO 6 Demonstrate scientific integrity, ethical responsibility, and academic va publications, research projects, and thesis work.	lues in scientific	
	List of Topics	Related CLOs	
	1. Course description and introduction to reinforced concrete members	CLO1,CLO6	
	2. Reinforced concrete materials	CLO1,CLO3, CLO4	
	3. Stress/strain relations for concrete and steel	CLO1, CLO3,CLO4	
	4. Confinement and proposed models	CLO2, CLO3, CLO4	
T i a i	5. Ductility of reinforced concrete members	CLO2, CLO3, CLO4	
Topics Covered	6. Short compression members	CLO2, CLO5,CLO6	
	7. Flexure and axial loads of short and slender columns	CLO2, CLO5,CLO6	
	8. Sectional analysis and deformations	CLO2, CLO3, CLO4,CLO6	
	9. Shear strength of reinforced concrete members	CLO2, CLO3, CLO4,CLO6	
	10. Anchorage	CLO2, CLO3, CLO4,CLO6	
	Code Requirements for Structural Concrete (ACI 318-19)		
Textbook(s)	• Saudi Building Code for Concrete Structures (SBC 304-24)		
	Reinforced Concrete: Mechanics and Design, 8 th edition (2021), James K.Wight. (Mandatory)		
and Other	 Reinforced Concrete Structure, 1st edition (1991), Robert Park Paulay, (recommended) 	x & Thomas	
Required Material	• Seismic Design of Reinforced Concrete Buildings, 1st edition (2014), Jack Moehle (recommended)		
	• Seismic Design of Reinforced Concrete and Masonry Buildings, 1st edition (1992), T. Paulay, M. J. N. Priestly, (recommended)		
	• Assigned readings and notes will be posted on LMS website ()	Blackboard)	
	Assignments	15%	
Grading	Project, report and oral presentation	15%	
System	Mid-term exam	30%	

	Final exam40%
Instructors	Dr. Ali S. Alqarni; Office 2A25; email: aalqarni@ksu,edu.sa
Date of Review	November, 2024